Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
preprints.org; 2024.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202404.0708.v1

ABSTRACT

Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the vaccine design with broad-spectrum potential.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.03.510566

ABSTRACT

The emergence of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) variants and "anatomical escape" characteristics threaten the effectiveness of current coronavirus disease (COVID-19) vaccines. There is an urgent need to understand the immunological mechanism of broad-spectrum respiratory tract protection to guide broader vaccines development. In this study, we investigated immune responses induced by an NS1-deleted influenza virus vectored intranasal COVID-19 vaccine (dNS1-RBD) which provides broad-spectrum protection against SARS-CoV-2 variants. Intranasal delivery of dNS1-RBD induced innate immunity, trained immunity and tissue-resident memory T cells covering the upper and lower respiratory tract. It restrained the inflammatory response by suppressing early phase viral load post SARS-CoV-2 challenge and attenuating pro-inflammatory cytokine (IL-6, IL-1B, and IFN-{gamma}) levels, thereby reducing excess immune-induced tissue injury compared with the control group. By inducing local cellular immunity and trained immunity, intranasal delivery of NS1-deleted influenza virus vectored vaccine represents a broad-spectrum COVID-19 vaccine strategy to reduce disease burden.


Subject(s)
COVID-19 , Coronavirus Infections
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.11.487660

ABSTRACT

COVID-19 continues to be a severe public health thread worldwide. The major challenge to control this pandemic is the rapid mutation rate of the SARS-Cov-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is pivotal to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-Cov-2 variants. In this study, we first got a synthetic nanobody (named C5) which could interfere with ACE2 binding to SARS-Cov-2 spike protein and its RBD domain. The affinity matured format of C5 clone, named C5G2, has a single digit nanomolar affinity to RBD domain and inhibit its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assay indicated that the monovalent C5G2 could protect the cells from the infection of SARS-Cov-2 wild type virus as well as most of the virus of concern, i.e. Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against omicron among all the variants with the IC50 of 4.9ng/ml (0.3 nM). We further solved the Cryo-EM structure of C5G2 in complex with the Spike trimer. The structure data showed that C5G2 bind to RBD mainly through its CDR3 at a vast region that not overlapping with the ACE2 binding surface. Surprisingly, C5G2 also bind to a distinct epitope residing in the NTD domain of spike protein through the same CDR3 loop, which may further increase its potency against the virus infection. Thus, this bi-paratopic nanobody may be served as an effective drug for the prophylaxis and therapy of the Omicron infection.


Subject(s)
Tumor Virus Infections , COVID-19
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1386044.v1

ABSTRACT

Antibody therapeutics for the treatment of COVID-19 has been highly successful while faces a challenge of the recent emergence of the Omicron variant which escapes the majority of existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of which, nAbs X01, X10 and X17 showed broadly neutralizing breadths against most variants of concern (VOCs) and X17 was further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-EM structures of three-antibody in complex with the spike proteins of prototyped SARS-CoV-2, Delta, Omicron and SARS-CoV defined three non-overlapping conserved epitopes on the receptor-binding domain (RBD). The triple antibody cocktail exhibited enhanced resistance to viral escape and effective protection against the infection of Beta variant in hamsters. Our finding will aid the development of both antibody therapeutics and broad vaccines against SARS-CoV-2 and emerging variants.


Subject(s)
COVID-19
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.25.477789

ABSTRACT

The widespread SARS-CoV-2 in humans results in the continuous emergence of new variants. Recently emerged Omicron variant with multiple spike mutations sharply increases the risk of breakthrough infection or reinfection, highlighting the urgent need for new vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x), which showed high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine comprised of STFK and STFK1628x elicited high titers of broad-spectrum antibodies to neutralize all 14 circulating SARS-CoV-2 variants, including Omicron; and fully protected vaccinees from intranasal SARS-CoV-2 challenges of either the ancestral strain or immune-evasive Beta variant. Strikingly, the vaccination of hamsters with the bivalent vaccine completely blocked the within-cage virus transmission to unvaccinated sentinels, for either the ancestral SARS-CoV-2 or Beta variant. Thus, our study provides new insights and antigen candidates for developing next-generation COVID-19 vaccines.


Subject(s)
COVID-19 , Breakthrough Pain
7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.19.476892

ABSTRACT

Omicron, a newly emerging SARS-CoV-2 variant, carried a large number of mutations in the spike protein leading to an unprecedented evasion from many neutralizing antibodies (nAbs). Here, we performed a head-to-head comparison of Omicron with other existing highly evasive variants in terms of their reduced sensitivities to antibodies, and found that Omicron variant is significantly more evasive than Beta and Mu variants. Of note, some key mutations occur in the conserved epitopes identified previously, especially in the binding sites of Class 4 nAbs, contributing to the increased Ab evasion. We also reported a broadly nAb (bnAb), VacW-209, which effectively neutralized all tested SARS-CoV-2 variants and even SARS-CoV. Finally, we determined six cryo-electron microscopy structures of VacW-209 complexed with the spike ectodomains of wild-type, Delta, Mu, C.1.2, Omicron, and SARS-CoV, and revealed the molecular basis of the broadly neutralizing activities of VacW-209 against SARS-CoV-2 variants. Overall, Omicron has once again raised the alarm over virus variation with significantly compromised neutralization. BnAbs targeting more conserved epitopes among variants will continue to play a key role in pandemic control and prevention. One sentence summaryStructural and functional analyses reveal that a human antibody named VacW-209 confers broad neutralization against SARS-CoV-2 variants including Omicron by recognizing a highly conserved epitope.


Subject(s)
Severe Acute Respiratory Syndrome
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.13.468472

ABSTRACT

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 day and 7 days after single-dose vaccination or 6 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight, caused by either the prototype-like strain or beta variant of SARS-CoV-2. Lasted data showed that the animals could be well protected against beta variant challenge 9 months after vaccination. Notably, the weight loss and lung pathological changes of hamsters could still be significantly reduced when the hamster was vaccinated 24 h after challenge. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to fight against the ongoing COVID-19 pandemic, compensating limitations of current intramuscular vaccines, particularly at the start of an outbreak.


Subject(s)
Coronavirus Infections , Weight Loss , COVID-19
10.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3903926

ABSTRACT

Background: The pandemic of SARS-CoV-2 has turned into a global public health crisis. Acute SARS-CoV-2 infection is associated with severe pneumonia, multiple-organ failures and deaths. Currently, treatment for SARS-CoV-2 infection and severe pneumonia is largely lacking. Several clinical trials demonstrated that glucocorticoid dexamethasone is effective to reduce disease severity and mortality. However, whether dexamethasone is clinically sufficient to treat COVID-19 is unknown.Methods: We tested the therapeutic effect of dexamethasone on SARS-CoV-2 infection and pneumonia in a Syrian hamster model. Survival rate, body weight loss, viral RNA, antibody responses, severity of lung inflammation and injury were measured in a 7-day acute infection course.Findings: Dexamethasone reduces body weight loss and relieves the diffusion of lung injury in SARS-CoV-2-infected hamster by inhibiting the excessive proinflammatory cytokines including IL-4, IL-6, IL-10, IL-13, TNF-α and IFN-γ. Dexamethasone rescues hamsters from the lethal infection of SARS-CoV-2 variant D614G. Dexamethasone attenuates serum neutralizing antibody and RBD-specific antibody titers, and slightly increases viral RNA level in lung tissues.Interpretation: Overall, using the hamster model, this study improves our understanding of the therapeutic mechanisms and drawbacks of dexamethasone treatment of COVID-19, and suggests that an antiviral is needed to accompany the dexamethasone treatment regimen.Funding: National Science Key Research and Development Project of China, National Natural Science Foundation of China, the CAMS Innovation Fund for Medical Sciences and China Postdoctoral Science Foundation.Declaration of Interest: The authors declare no competing interests.Ethical Approval: All the animal experiments were approved by the Medical Ethics Committee(SUCM2021-112).


Subject(s)
COVID-19 , Lung Injury , Pneumonia , Wounds and Injuries
11.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-582977.v1

ABSTRACT

The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the still ravaging COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses’ receptor binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Significantly, both antibodies confer good mutation resistance to the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics, and can also inform the design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.10.439161

ABSTRACT

Although vaccines have been successfully developed and approved against SARS-CoV-2, it is still valuable to perform studies on conserved antigenic sites for preventing possible pandemic-risk of other SARS-like coronavirus in the future and prevalent SARS-CoV-2 variants. By antibodies obtained from convalescent COVID-19 individuals, receptor binding domain (RBD) were identified as immunodominant neutralizing domain that efficiently elicits neutralizing antibody response with on-going affinity mature. Moreover, we succeeded to define a quantitative antigenic map of neutralizing sites within SARS-CoV-2 RBD, and found that sites S2, S3 and S4 (new-found site) are conserved sites and determined as subimmunodominant sites, putatively due to their less accessibility than SARS-CoV-2 unique sites. P10-6G3, P07-4D10 and P05-6H7, respectively targeting S2, S3 and S4, are relatively rare antibodies that also potently neutralizes SARS-CoV, and the last mAbs performing neutralization without blocking S protein binding to receptor. Further, we have tried to design some RBDs to improve the immunogenicity of conserved sites. Our studies, focusing on conserved antigenic sites of SARS-CoV-2 and SARS-CoV, provide insights for promoting development of universal SARS-like coronavirus vaccines therefore enhancing our pandemic preparedness.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423552

ABSTRACT

A safe and effective SARS-CoV-2 vaccine is essential to avert the on-going COVID-19 pandemic. Here, we developed a subunit vaccine, which is comprised of CHO-expressed spike ectodomain protein (StriFK) and nitrogen bisphosphonates-modified zinc-aluminum hybrid adjuvant (FH002C). This vaccine candidate rapidly elicited the robust humoral response, Th1/Th2 balanced helper CD4 T cell and CD8 T cell immune response in animal models. In mice, hamsters, and non-human primates, 2-shot and 3-shot immunization of StriFK-FH002C generated 28- to 38-fold and 47- to 269-fold higher neutralizing antibody titers than the human COVID-19 convalescent plasmas, respectively. More importantly, the StriFK-FH002C immunization conferred sterilizing immunity to prevent SARS-CoV-2 infection and transmission, which also protected animals from virus-induced weight loss, COVID-19-like symptoms, and pneumonia in hamsters. Vaccine-induced neutralizing and cell-based receptor-blocking antibody titers correlated well with protective efficacy in hamsters, suggesting vaccine-elicited protection is immune-associated. The StriFK-FH002C provided a promising SARS-CoV-2 vaccine candidate for further clinical evaluation.


Subject(s)
COVID-19 , Weight Loss , Pneumonia
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.19.423597

ABSTRACT

COVID-19, which has resulted a worldwide health crisis with more than 74.9 million confirmed cases worldwide by December 2020, is caused by a newly emerging coronavirus identified and named SARS-CoV-2 in February in Wuhan, China. Experiences in defeating SARS, which infested during 2002-2003, can be used in treating the new disease. However, comparative genomics and epidemiology studies have shown much difference between SARS-CoV and SARS-CoV-2, which underlies the different clinical features and therapies in between those two diseases. Further studies comparing transcriptomes infected by these two viruses to uncover the differences in host responses would be necessary. Here we conducted a comprehensive transcriptome analysis of SARS-CoV and SARS-CoV-2-infected human cell lines, including Caco-2, Calu-3, H1299. Clustering analysis and expression of ACE2 show that SARS-CoV-2 has broader but weaker infection, where the largest discrepancy occurs in the epithelial lung cancer cell, Calu-3. SARS-CoV-2 genes also show less tissue specificity than SARS-CoV genes. Furthermore, we detected more general but moderate immune responses in SARS-CoV-2 infected transcriptomes by comparing weighted gene co-expression networks and modules. Our results suggest a different immune therapy and treatment scheme for COVID-19 patients than the ones used on SARS patients. The wider but weaker permissiveness and host responses of virus infection may also imply a long-term existence of SARS-CoV-2 among human populations.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , Tumor Virus Infections , Lung Neoplasms , COVID-19
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.22.215236

ABSTRACT

The ongoing COVID-19 pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and host ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, we generated a recombinant fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process. In ACE2-expressing cells, we found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.


Subject(s)
COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.07.029934

ABSTRACT

A novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) emerged in late 2019, causing an outbreak of pneumonia [coronavirus disease 2019 (COVID-19)] in Wuhan, China, which then rapidly spread globally. Although the use of ready-made reaction mixes can enable more rapid PCR-based diagnosis of COVID-19, the need to transport and store these mixes at low temperatures presents challenges to already overburdened logistics networks. Here, we present an optimized freeze-drying procedure that allows SARS-CoV-2 PCR mixes to be transported and stored at ambient temperatures, without loss of activity. Additive-supplemented PCR mixes were freeze-dried. The residual moisture of the freeze-dried PCR mixes was measured by Karl-Fischer titration. We found that freeze-dried PCR mixes with [~]1.2% residual moisture are optimal for storage, transport, and reconstitution. The sensitivity, specificity, and repeatability of the freeze-dried reagents were similar to those of freshly prepared, wet reagents. The freeze-dried mixes retained activity at room temperature (18[~]25{degrees}C) for 28 days, and for 14 and 10 days when stored at 37{degrees}C and 56{degrees}C, respectively. The uptake of this approach will ease logistical challenges faced by transport networks and make more cold storage space available at diagnosis and hospital laboratories. This method can also be applied to the generation of freeze-dried PCR mixes for the detection of other pathogens.


Subject(s)
COVID-19
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.08.026948

ABSTRACT

The global pandemic of Coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable in vitro neutralization assay is very important for the development of neutralizing antibodies, vaccines and other inhibitors. In this study, G protein-deficient vesicular stomatitis virus (VSVdG) bearing full-length and truncated spike (S) protein of SARS-CoV-2 were evaluated. The virus packaging efficiency of VSV-SARS-CoV-2-Sdel18 (S with C-terminal 18 amino acid truncation) is much higher than VSV-SARS-CoV-2-S. A neutralization assay for antibody screening and serum neutralizing titer quantification was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and human angiotensin-converting enzyme 2 (ACE2) overexpressed BHK21 cell (BHK21-hACE2). The experimental results can be obtained by automatically counting EGFP positive cell number at 12 hours after infection, making the assay convenient and high-throughput. The serum neutralizing titer of COVID-19 convalescent patients measured by VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with live SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting receptor binding domain (RBD) of SARS-CoV-2-S were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.


Subject(s)
COVID-19 , Vesicular Stomatitis
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.23.20041707

ABSTRACT

Background Timely diagnosis of SARS-CoV-2 infection is the prerequisite for treatment and preventive quarantine. The serology characteristics and complement diagnosis value of antibody test to RNA test needs to be demonstrated. Method A patient cohort study was conducted at the first affiliated hospital of Zhejiang University, China. Serial sera of COVID-19 patients were collected and total antibody (Ab), IgM and IgG antibody against SARS-CoV-2 were detected. The antibody dynamics during the infection were described. Results The seroconversion rate for Ab, IgM and IgG in COVID-19 patients was 98.8% (79/80), 93.8% (75/80) and 93.8% (75/80), respectively. The first detectible serology marker is total antibody and followed by IgM and IgG, with a median seroconversion time of 15, 18 and 20 day post exposure (d.p.e) or 9, 10 and 12 days post onset, separately. The antibody levels increased rapidly since 6 d.p.o and accompanied with the decline of viral load. For patients in the early stage of illness (0-7d.p.o),Ab showed the highest sensitivity (64.1%) compared to the IgM and IgG (33.3% for both, p<0.001). The sensitivities of Ab, IgM and IgG detection increased to 100%, 96.7% and 93.3% two weeks later, respectively. Conclusions Typical acute antibody response is induced during the SARS-CoV-2 infection. The serology testing provides important complementation to RNA test for pathogenic specific diagnosis and helpful information to evaluate the adapted immunity status of patient. It should be strongly recommended to apply well-validated antibody tests in the clinical management and public health practice to improve the control of COVID-19 infection.


Subject(s)
COVID-19
19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.16.994152

ABSTRACT

Pandemic coronavirus disease 2019 (COVID-19) is caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which there are no efficacious vaccines or therapeutics that are urgently needed. We expressed three versions of spike (S) proteins--receptor binding domain (RBD), S1 subunit and S ectodomain--in insect cells. RBD appears monomer in solutions, whereas S1 and S associate into homotrimer with substantial glycosylation. The three proteins confer excellent antigenicity with six convalescent COVID-19 patient sera. Cryo-electron microscopy (cryo-EM) analyses indicate that the SARS-CoV-2 S trimer dominate in a unique conformation distinguished from the classic prefusion conformation of coronaviruses by the upper S1 region at lower position ~15 [A] proximal to viral membrane. Such conformation is proposed as an early prefusion state for the SARS-CoV-2 spike that may broaden the knowledge of coronavirus and facilitate vaccine development.


Subject(s)
Coronavirus Infections , COVID-19
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.02.20030189

ABSTRACT

Summary Background The novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patient remains largely unknown, and the clinical values of antibody testing have not been fully demonstrated. Methods A total of 173 patients with confirmed SARS-CoV-2 infection were enrolled. Their serial plasma samples (n = 535) collected during the hospitalization period were tested for total antibodies (Ab), IgM and IgG against SARS-CoV-2 using immunoassays. The dynamics of antibodies with the progress and severity of disease was analyzed. Findings Among 173 patients, the seroconversion rate for Ab, IgM and IgG was 93.1% (161/173), 82.7% (143/173) and 64.7% (112/173), respectively. Twelve patients who had not seroconverted were those only blood samples at the early stage of illness were collected. The seroconversion sequentially appeared for Ab, IgM and then IgG, with a median time of 11, 12 and 14 days, respectively. The presence of antibodies was < 40% among patients in the first 7 days of illness, and then rapidly increased to 100.0%, 94.3% and 79.8% for Ab, IgM and IgG respectively since day 15 after onset. In contrast, the positive rate of RNA decreased from 66.7% (58/87) in samples collected before day 7 to 45.5% (25/55) during days 15 to 39. Combining RNA and antibody detections significantly improved the sensitivity of pathogenic diagnosis for COVID-19 patients (p < 0.001), even in early phase of 1-week since onset (p = 0.007). Moreover, a higher titer of Ab was independently associated with a worse clinical classification (p = 0.006). Interpretation The antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.


Subject(s)
COVID-19 , Infections
SELECTION OF CITATIONS
SEARCH DETAIL